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We find that studying the simplest of the coupled nonequilibrium growth equations of Barabasi by self-
consistent mode coupling requires the use of dressed vertices. Using the vertex renormalization, we find a
roughening exponent which already in the leading order is quite close to the numerical value.
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Models of interfacial growth have attracted a tremendousghe ¢ field, the valuea=5/6 while the numerical value af
amount of attention since the pioneering work of Kardar,is nearly 0.68. The dynamical exponenbf the  field is
Parisi, and Zhan@P2Z) [1,2]. A variety of interesting issues found to be 2. Thus, in this case the dynamic exponent for
are associated with the KPZ equation and they have giveboth ¢ and ¢ fields is found to be 2. We will call this
rise to a variety of techniqud8]. Among the first analytic “extended” dynamic scaling, i.e., the time scale is indepen-
techniques used to tackle the KPZ system were the dynamigent of the nature of the fiel®]. As it turns out, this is the
renormalization group(DRG) [4] and the self-consistent only situation for this case. However this need not always be
mode coupling schemé&CMO) [5,6]. An important variant  so. In another model considered by Ertaas and Kardar and
of the KPZ system was introduced by Ertaas and Kafdar Barabasi,
and Barabadi8]. This variant consisted of two coupled fields

(as opposed to one field in KP&nd is useful for studying dd P )\ ?

the effects of a second nonequilibrium field on the growing E:Flﬁ M(&) +Ny, (€
interface. In these coupled field problems DRG has been

employed, as also numerical techniques. One does not al- 5

ways get a stable fixed point with the DRG analysis which ‘9_902 s ﬁ 9y N )
may sometimes indicate a failure of the perturbation scheme a2 g2 IX X 2

or may indicate a basic instability of the system. It is inter-

esting to note that in many cases the exponents coming frohere are two possibilitiesi) z,=z,=3/2; this is the ex-
the one-loop DRG analysis are not in very good agreemertended dynamic scaling and is found to be the correct situa-
with the numerical analysis. This is exemplified in the sim-tion for A>0 with \,>0; (ii) z,=3/2, butz,=2; this situ-
plest situation treated by Barabasi—an essentially linear sysation is obtained foh <0 with A\;>0 and can be described

tem coupled according to as “weak” scaling[9]. For problems involving two or more
coupled fields, one needs to differentiate between “ex-
ap P tended” and “weak” scaling.
at =Flﬁ +Ng, (1) In the one-dimensional KPZ, the perturbative DRG is ex-
act(due to the existence of a fluctuation-dissipation relation
o Py ab oy but this is not true for the coupled system in one dimension.
— =Ty—+A— —+N,, (2)  The self-consistent mode couplit§CMC) which has been
ot ax? X IX reasonably succesful for the KPZ, has never been attempted
in the coupled system. In this Brief Report, we apply the
with (Ng o(X1,t1) N o(Xz,t5)) = 2D 20(X1 = Xp) (ty — t5). SCMC to the coupled system to see if it is a quantitatively

The field ¢ satisfies the Edwards-Wilkinson equation andbetter scheme than the perturbative DRG. In the process, we
the field ¢ is coupled linearly via a gradient coupling to the find something quite unusual. In all known situations, SCMC
¢ field. While the Edwards-Wilkinson model can be exactly has been succesful in cases where the vertex is not renormal-
solved, this is not true for Eq2) because of the multiplica- ized. This, in contrast, is a situation where the momentum
tive noise(note thate is a random fieldl The DRG recursion dependence of the dressed vertex is absolutely essential. This
relations in this case vyield for the roughening exponemf  is what makes the application of SCMC interesting in this
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problem and should act as a prototype for situations where P

dressed vertices are unavoidable. Writing Eds.and(2) in
momentum space, we have

B (k)= —T 1k2¢(k) + Ny (k), (5)

(k)= —Tzkzdf(k)—K% p(k—p) p(p)¢h(k—p)+Ny(k),
(6)
with (Ny (K1, @1) Ny Kz, 02))=2D1 28(Ky +Kp) (w14 wp).

The basic elements of the calculation are the Green's (b) \F

functions G 4(k,w) and G ,(k,w), the correlation functions

Cy(k,0) and Cy(k,w) and the vertex functiom (k,q,k

FIG. 1. The self-consistent equation for the correlator \wine

—(q). Obviously G, and C, are exactly known and are Vertex. The double thick line is the dressed correlator and the

given by
G, (kw)=—iw+TK? 7)
Colkow)= 21 ®8)
ISR

while for the ¢ field

G, (kw)=—iw+Tk*+3(K o), (9)
C¢(k,w)=w2+—l_€k4+|6¢(k,w)| F(k,w), (10)

and
A(k,p.k—p)=N+A(k,p). (12)

The self-energy. (k,w) is found at the dressed one level

to be given by
dp do’
32 20—

XCy(p,0")Gy(k—p,o—w’)
2D,

_ f@ k(k—p)
T )27 —jw+T,p2+3(k—p)+To(k—p)?’
(12

where we have used E) and Eq.(9) in the Lorentzian
approximation,
2 4(k,) has been replaced by its zero frequency form.

double straight line the propagator. The cross stands for the noise.
(b) The self-consistent equation for the correlator vdtkessedver-

tex. The double thick line is the dressed correlator and the double

straight line the dressed propagator. The cross stands for the noise.

(I'1+T,)(1/p'2). This integral is divergent and needs to be
cut off atO(k), which spoils thek? behavior. The only way
this can be prevented is by setting' 3=1",, which makes
the O(k?) contribution of%, vanish, i.e., implied"=0 and
this establishes
3F1:F2, (14)

which is in exact agreement with the earlier work of Bara-
basi.

We now discuss the correlation function. The diagram
with bare vertex is shown in Fig.(d) and leads to

C ok )= 2D, Gk zsz dp do’
o ,w)—w2+—1,§k4+| K o) Sy Y-

X p?(k—p)?C4(p,0’)

XCy(k—p,0—w"). (19
We now assume the scaling form
D, )
Cyk,w)= f(wlk?), (16)

k3+2a

which is consistent with the equal time correlation function,
J(dw/2m)C,(k,») beingk 1~2*. In the absence ok, a

i.e., during the frequency convolution,=1/2 and the extra roughness produced by this added noise

is expected to raise beyond 1/2. Our expectation, then is

Our first observation is that within the extended dynamicthat the second term will dominate in E@.5). The power
scaling, we expeck,=2. We need to examine if this is count of the second term in E¢15) shows thatC,(k,®)

self-consistent. Setting (k) =I'k?, we have

rk?=

2 —
\ DlJ dp k(k—p) 13

Py ) 27 ryp?Totk—p)?’

whereT ,=T,+T.
The long wavelength propertyk{-~0) of the integral on

the right hand side is best seen by changing to the symmetri€ ,(k,w) = |G¢(k,w)|2)\ Py

variablesp’ = —k/2+ p which gives theO(k?) contribution
of the integral to bek?(\?D/T';)f(dp’/2m)[ (31— T5)/

~k~472¢ which cannot match the power count of the left
hand side for any value of and hence a self-consistent
formulation requires the vertex to acquire a momentum de-
pendence. Dressing the vertex leads to the diagram in Fig.
1(b). Dropping the first term on the right-hand side of Eq.
(15) and dressing the vertex in the second leads to

dp do’ ,
o P (k—=p)°A(k,p,k—p)

XCy(p,w")Cyk—p,w—o’). (17
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Once again, the dressed vertéxthat we are interested in
corresponds ta— 0. This vertex scales apon the left hand
side. Power count of the right-hand side shows that it is a
linear function of momentum as well and thus the two sides
are matched in exponents. To impose the amplitude incon-
sistency, we evaluate the integral on the right-hand side in
the dominant region which corresponds to small valugs. of

This leads to
FIG. 2. The self-consistent equation for the vertex.
NA D, 27
Since, we are interested in tke- 0 property ofC ,(k, w), B 2771“5 4.3 20
the vertex that we need is limgA (k,p,k—p) and if in this
limit the vertex has the formi\op where A, is a constant, Comparing with Eq(13), we find
then the self-consistency in power counting is restored. The
consistency of the amplitude is assuredvife evaluate the = E+ 1 ~059 (21)
integral in Eq.(17) in the leading approximatiofiL0] of k 2 237z 7
0l This is to be compared with the numerical value of
AD; (dp (k—=p)2 A(k,p,k—p) =0.68. For a more careful analysis, E¢E7) and(19) have
= ? > K pli+2a 1 to be solved numerically. This is an extremely formidable
ory [k—pl (k—p)?+ =p? task because the dependenceé\adn the three variableggwo
3 independenthas to be charted out.
NAD. [ d 1 As a final point, one would like to show that in this par-
0 1f ap ticular case, the weak scaling situation does not arisg,, If
ory J2m4 ,, were to be different from 2, then fa¥(k,») to be at all
3 relevant,z, has to be smaller than 2. This means Etp)
would at zero frequency beconfee now include the vertex
:?\AoDzl . 1 - 19 correction
12ry can 200 xzolf dp A(k,p)k(k—p) 22
We note in passing that the above momentum dependence Iy J2m X(k=p)

of the vertex does not alter the conditions of Et@). The

. ; ; A Simple power counting shows that withep, z,=2,
self-consistent equation for the vertex is shown in Fig. 2

which contradicts our starting assumption thgt2 and

Clearly hence there is no self-consistent solution of the weak scaling
dp de variety.

A(k,q,k_q):)\f — —p(p—q)(k—p)? We have checked to ensure that for the extended scaling

2m 2 case, the self-consistent scheme does give the roughening

XG(p,)Gy(p—d,) exponent. Whether, the scheme can be made to work for the

weak scaling situation is under consideration.

X Cy(k—p,w)A(p,p—q, .
o(k=P.0)A(P.P=0.0) The authors A.K.C. and A.B. sincerely acknowledge par-
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