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We find that studying the simplest of the coupled nonequilibrium growth equations of Barabasi by self-
consistent mode coupling requires the use of dressed vertices. Using the vertex renormalization, we find a
roughening exponent which already in the leading order is quite close to the numerical value.
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Models of interfacial growth have attracted a tremendo
amount of attention since the pioneering work of Kard
Parisi, and Zhang~KPZ! @1,2#. A variety of interesting issues
are associated with the KPZ equation and they have g
rise to a variety of techniques@3#. Among the first analytic
techniques used to tackle the KPZ system were the dyna
renormalization group~DRG! @4# and the self-consisten
mode coupling scheme~SCMC! @5,6#. An important variant
of the KPZ system was introduced by Ertaas and Kardar@7#
and Barabasi@8#. This variant consisted of two coupled field
~as opposed to one field in KPZ! and is useful for studying
the effects of a second nonequilibrium field on the grow
interface. In these coupled field problems DRG has b
employed, as also numerical techniques. One does no
ways get a stable fixed point with the DRG analysis wh
may sometimes indicate a failure of the perturbation sche
or may indicate a basic instability of the system. It is inte
esting to note that in many cases the exponents coming f
the one-loop DRG analysis are not in very good agreem
with the numerical analysis. This is exemplified in the si
plest situation treated by Barabasi—an essentially linear
tem coupled according to

]f

]t
5G1

]2f

]x2
1N1 , ~1!

]c

]t
5G2

]2c

]x2
1l

]f

]x

]c

]x
1N2 , ~2!

with ^N1,2(x1 ,t1)N1,2(x2 ,t2)&52D1,2d(x12x2)d(t12t2).
The fieldf satisfies the Edwards-Wilkinson equation a

the fieldc is coupled linearly via a gradient coupling to th
f field. While the Edwards-Wilkinson model can be exac
solved, this is not true for Eq.~2! because of the multiplica
tive noise~note thatf is a random field!. The DRG recursion
relations in this case yield for the roughening exponenta of
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thec field, the valuea55/6 while the numerical value ofa
is nearly 0.68. The dynamical exponentz of the c field is
found to be 2. Thus, in this case the dynamic exponent
both f and c fields is found to be 2. We will call this
‘‘extended’’ dynamic scaling, i.e., the time scale is indepe
dent of the nature of the field@9#. As it turns out, this is the
only situation for this case. However this need not always
so. In another model considered by Ertaas and Kardar
Barabasi,

]f

]t
5G1

]2f

]x2
1l1S ]f

]x D 2

1N1 , ~3!

]c

]t
5G2

]2c

]x2
1l

]f

]x

]c

]x
1N2 , ~4!

there are two possibilities:~i! zf5zc53/2; this is the ex-
tended dynamic scaling and is found to be the correct si
tion for l.0 with l1.0; ~ii ! zf53/2, butzc52; this situ-
ation is obtained forl,0 with l1.0 and can be describe
as ‘‘weak’’ scaling@9#. For problems involving two or more
coupled fields, one needs to differentiate between ‘‘e
tended’’ and ‘‘weak’’ scaling.

In the one-dimensional KPZ, the perturbative DRG is e
act~due to the existence of a fluctuation-dissipation relatio!,
but this is not true for the coupled system in one dimensi
The self-consistent mode coupling~SCMC! which has been
reasonably succesful for the KPZ, has never been attem
in the coupled system. In this Brief Report, we apply t
SCMC to the coupled system to see if it is a quantitativ
better scheme than the perturbative DRG. In the process
find something quite unusual. In all known situations, SCM
has been succesful in cases where the vertex is not renor
ized. This, in contrast, is a situation where the moment
dependence of the dressed vertex is absolutely essential.
is what makes the application of SCMC interesting in th
2086 ©2000 The American Physical Society



e

n

e

el

n

i
s

et

be

a-

m

n,

oise
is

ft
t

de-
Fig.
q.

the
oise.

ble
oise.

PRE 61 2087BRIEF REPORTS
problem and should act as a prototype for situations wh
dressed vertices are unavoidable. Writing Eqs.~1! and~2! in
momentum space, we have

ḟ~k!52G1k2f~k!1N1~k!, ~5!

ċ~k!52G2k2c~k!2l(
p

p~k2p!f~p!c~k2p!1N2~k!,

~6!

with ^N1,2(k1,v1)N1,2(k2,v2)&52D1,2d(k11k2)d(v11v2).
The basic elements of the calculation are the Gree

functionsGf(k,v) and Gc(k,v), the correlation functions
Cf(k,v) and Cc(k,v) and the vertex functionL(k,q,k
2q). Obviously Gf and Cf are exactly known and ar
given by

Gf
21~k,v!52 iv1G1k2, ~7!

Cf~k,v!5
2D1

v21G1
2k4

, ~8!

while for thec field

Gc
21~k,v!52 iv1G2k21S~k,v!, ~9!

Cc~k,v!5
2D2

v21G2
2k4

1uGc~k,v!u2F~k,v!, ~10!

and

L~k,p,k2p!5l1L~k,p!. ~11!

The self-energyS(k,v) is found at the dressed one lev
to be given by

S~k,v!5l2E dp

2p

dv8

2p
kp2~k2p!

3Cf~p,v8!Gc~k2p,v2v8!

5
l2D1

G E dp

2p

k~k2p!

2 iv1G1p21S~k2p!1G2~k2p!2
,

~12!

where we have used Eq.~8! and Eq.~9! in the Lorentzian
approximation, i.e., during the frequency convolutio
Sc(k,v) has been replaced by its zero frequency form.

Our first observation is that within the extended dynam
scaling, we expectzc52. We need to examine if this i
self-consistent. SettingS(k)5Gk2, we have

Gk25
l2D1

G1
E dp

2p

k~k2p!

G1p21G̃2~k2p!2
, ~13!

whereG̃25G21G.
The long wavelength property (k→0) of the integral on

the right hand side is best seen by changing to the symm
variablesp852k/21p which gives theO(k2) contribution
of the integral to bek2(l2D1 /G1)*(dp8/2p)@(3G12G̃2)/
re

’s

,

c
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(G11G2)(1/p82). This integral is divergent and needs to
cut off atO(k), which spoils thek2 behavior. The only way
this can be prevented is by setting 3G15G̃2, which makes
the O(k2) contribution ofS vanish, i.e., impliesG50 and
this establishes

3G15G2 , ~14!

which is in exact agreement with the earlier work of Bar
basi.

We now discuss the correlation function. The diagra
with bare vertex is shown in Fig. 1~a! and leads to

Cc~k,v!5
2D2

v21G2
2k4

1uGc~k,v!u2l2E dp

2p

dv8

2p

3p2~k2p!2Cf~p,v8!

3Cc~k2p,v2v8!. ~15!

We now assume the scaling form

Cc~k,v!5
Dc

k312a
f ~v/k2!, ~16!

which is consistent with the equal time correlation functio
*(dv/2p)Cc(k,v) being k2122a. In the absence ofl, a
51/2 and the extra roughness produced by this added n
is expected to raisea beyond 1/2. Our expectation, then
that the second term will dominate in Eq.~15!. The power
count of the second term in Eq.~15! shows thatCc(k,v)
;k2422a which cannot match the power count of the le
hand side for any value ofa and hence a self-consisten
formulation requires the vertex to acquire a momentum
pendence. Dressing the vertex leads to the diagram in
1~b!. Dropping the first term on the right-hand side of E
~15! and dressing the vertex in the second leads to

Cc~k,v!5uGc~k,v!u2lE dp

2p

dv8

2p
p2~k2p!2L~k,p,k2p!

3Cf~p,v8!Cc~k2p,v2v8!. ~17!

FIG. 1. The self-consistent equation for the correlator withbare
vertex. The double thick line is the dressed correlator and
double straight line the propagator. The cross stands for the n
~b! The self-consistent equation for the correlator withdressedver-
tex. The double thick line is the dressed correlator and the dou
straight line the dressed propagator. The cross stands for the n
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Since, we are interested in thek→0 property ofCc(k,v),
the vertex that we need is limk→0L(k,p,k2p) and if in this
limit the vertex has the formL0p whereL0 is a constant,
then the self-consistency in power counting is restored.
consistency of the amplitude is assured if@we evaluate the
integral in Eq.~17! in the leading approximation@10# of k
→0#

15
lD1

9G1
2E dp

2p

~k2p!2

uk2pu112a

L~k,p,k2p!

~k2p!21
1

3
p2

.
lL0D1

9G1
2 E dp

2p

1

4

3
p2a

5
lL0D1

12G1
2

1

2a21
. ~18!

We note in passing that the above momentum depend
of the vertex does not alter the conditions of Eq.~14!. The
self-consistent equation for the vertex is shown in Fig.
Clearly

L~k,q,k2q!5lE dp

2p

dv

2p
p~p2q!~k2p!2

3Gc~p,v!Gc~p2q,v!

3Cf~k2p,v!L~p,p2q,q!

3L~k2p,p2q,k2q!. ~19!

FIG. 2. The self-consistent equation for the vertex.
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Once again, the dressed vertexL that we are interested in
corresponds tok→0. This vertex scales asq on the left hand
side. Power count of the right-hand side shows that it i
linear function of momentum as well and thus the two sid
are matched in exponents. To impose the amplitude inc
sistency, we evaluate the integral on the right-hand side
the dominant region which corresponds to small values op.
This leads to

15
lL0D1

2pG1
2

2p

4A3
. ~20!

Comparing with Eq.~13!, we find

a5
1

2
1

1

2A3p
.0.59. ~21!

This is to be compared with the numerical value ofa
50.68. For a more careful analysis, Eqs.~17! and~19! have
to be solved numerically. This is an extremely formidab
task because the dependence ofL on the three variables~two
independent! has to be charted out.

As a final point, one would like to show that in this pa
ticular case, the weak scaling situation does not arise. Ifzc
were to be different from 2, then forS(k,v) to be at all
relevant,zc has to be smaller than 2. This means Eq.~12!
would at zero frequency become~we now include the vertex
correction!

S~k!5
l2D1

G1
E dp

2p

L~k,p!k~k2p!

S~k2p!
. ~22!

Simple power counting shows that withL}p, zc52,
which contradicts our starting assumption thatzc,2 and
hence there is no self-consistent solution of the weak sca
variety.

We have checked to ensure that for the extended sca
case, the self-consistent scheme does give the roughe
exponent. Whether, the scheme can be made to work for
weak scaling situation is under consideration.
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